skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krovi, Venkat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Simulation to reality (sim2real) transfer from a dynamics and controls perspective usually involves re-tuning or adapting the designed algorithms to suit real-world operating conditions, which often violates the performance guarantees established originally. This work presents a generalizable framework for achieving reliable sim2real transfer of autonomy-oriented control systems using multimodel multiobjective robust optimal control synthesis, which lends well to uncertainty handling and disturbance rejection with theoretical guarantees. Particularly, this work is centered around a novel actuation-redundant scaled autonomous vehicle called Nigel, with independent all-wheel drive and independent all-wheel steering architecture, whose enhanced configuration space bodes well for robust control applications. To this end, we present the mechatronic design, dynamics modeling, parameter identification, and robust stabilizing as well as tracking control of Nigel using the proposed framework, with exhaustive experimentation and benchmarking in simulation as well as real-world settings. 
    more » « less
  2. In the ever-evolving landscape of autonomous vehicles, competition and research of high-speed autonomous racing emerged as a captivating frontier, pushing the limits of perception, planning, and control. Autonomous racing presents a setup where the intersection of cutting-edge software and hardware development sparks unprecedented opportunities and confronts unique challenges. The motorsport axiom, “If everything seems under control, then you are not going fast enough,” resonates in this special issue, underscoring the demand for algorithms and hardware that can navigate at the cutting edge of control, traction, and agility. In pursuing autonomy at high speeds, the racing environment becomes a crucible, pushing autonomous vehicles to execute split-second decisions with high precision. Autonomous racing, we believe, offers a litmus test for the true capabilities of self-driving software. Just as racing has historically served as a proving ground for automotive technology, autonomous racing now presents itself as the crucible for testing self-driving algorithms. While routine driving situations dominate much of the autonomous vehicle operations, focusing on extreme situations and environments is crucial to support investigation into safety benefits. The urgency of advancing highspeed autonomy is palpable in burgeoning autonomous racing competitions like Formula Student Driverless, F1TENTH autonomous racing, Roborace, and the Indy Autonomous Challenge. These arenas provide a literal testbed for testing perception, planning, and control algorithms and symbolize the accelerating traction of autonomous racing as a proving ground for agile and safe autonomy. Our special issue focuses on cutting-edge research into software and hardware solutions for highspeed autonomous racing. We sought contributions from the robotics and autonomy communities that delve into the intricacies of head-to-head multi-agent racing: modeling vehicle dynamics at high speeds, developing advanced perception, planning, and control algorithms, as well as the demonstration of algorithms, in simulation and in real-world vehicles. While presenting recent developments for autonomous racing, we believe these special issue papers will also create an impact in the broader realm of autonomous vehicles. 
    more » « less
  3. Range anxiety and lack of adequate access to fast charging are proving to be important impediments to electric vehicle (EV) adoption. While many techniques to fast charging EV batteries (model-based & model-free) have been developed, they have focused on a single Lithium-ion cell. Extensions to battery packs are scarce, often considering simplified architectures (e.g., series-connected) for ease of modeling. Computational considerations have also restricted fast-charging simulations to small battery packs, e.g., four cells (for both series and parallel connected cells). Hence, in this paper, we pursue a model-free approach based on reinforcement learning (RL) to fast charge a large battery pack (comprising 444 cells). Each cell is characterized by an equivalent circuit model coupled with a second-order lumped thermal model to simulate the battery behavior. After training the underlying RL, the developed model will be straightforward to implement with low computational complexity. In detail, we utilize a Proximal Policy Optimization (PPO) deep RL as the training algorithm. The RL is trained in such a way that the capacity loss due to fast charging is minimized. The pack’s highest cell surface temperature is considered an RL state, along with the pack’s state of charge. Finally, in a detailed case study, the results are compared with the constant current-constant voltage (CC-CV) approach, and the outperformance of the RL-based approach is demonstrated. Our proposed PPO model charges the battery as fast as a CC-CV with a 5C constant stage while maintaining the temperature as low as a CC-CV with a 4C constant stage. 
    more » « less
  4. Modern-day autonomous vehicles are increasingly becoming complex multidisciplinary systems composed of mechanical, electrical, electronic, computing and information subsystems. Furthermore, the individual constituent technologies employed for developing autonomous vehicles have started maturing up to a point, where it seems beneficial to start looking at the synergistic integration of these components into sub-systems, systems, and potentially, system-of-systems. Hence, this work applies the principles of mechatronics approach of system design, verification and validation for the development of autonomous vehicles. Particularly, we discuss leveraging multidisciplinary codesign practices along with virtual, hybrid and physical prototyping and testing within a concurrent engineering framework to develop and validate a scaled autonomous vehicle using the AutoDRIVE Ecosystem. We also describe a case-study of autonomous parking application using a modular probabilistic framework to illustrate the benefits of the proposed approach. 
    more » « less
  5. Cable driven parallel robots (CDPRs) are often challenging to model and to dynamically control due to the inherent flexibility and elasticity of the cables. The additional inclusion of online geometric reconfigurability to a CDPR results in a complex underdetermined system with highly non-linear dynamics. The necessary (numerical) redundancy resolution requires multiple layers of optimization rendering its application computationally prohibitive for real-time control. Here, deep reinforcement learning approaches can offer a model-free framework to overcome these challenges and can provide a real-time capable dynamic control. This study discusses three settings for a model-free DRL implementation in dynamic trajectory tracking: (i) for a standard non-redundant CDPR with a fixed workspace; (ii) in an end-to-end setting with redundancy resolution on a reconfigurable CDPR; and (iii) in a decoupled approach resolving kinematic and actuation redundancies individually. 
    more » « less
  6. The addition of geometric reconfigurability in a cable driven parallel robot (CDPR) introduces kinematic redundancies which can be exploited for manipulating structural and mechanical properties of the robot through redundancy resolution. In the event of a cable failure, a reconfigurable CDPR (rCDPR) can also realign its geometric arrangement to overcome the effects of cable failure and recover the original expected trajectory and complete the trajectory tracking task. In this paper we discuss a fault tolerant control (FTC) framework that relies on an Interactive Multiple Model (IMM) adaptive estimation filter for simultaneous fault detection and diagnosis (FDD) and task recovery. The redundancy resolution scheme for the kinematically redundant CDPR takes into account singularity avoidance, manipulability and wrench quality maximization during trajectory tracking. We further introduce a trajectory tracking methodology that enables the automatic task recovery algorithm to consistently return to the point of failure. This is particularly useful for applications where the planned trajectory is of greater importance than the goal positions, such as painting, welding or 3D printing applications. The proposed control framework is validated in simulation on a planar rCDPR with elastic cables and parameter uncertainties to introduce modeled and unmodeled dynamics in the system as it tracks a complete trajectory despite the occurrence of multiple cable failures. As cables fail one by one, the robot topology changes from an over-constrained to a fully constrained and then an under-constrained CDPR. The framework is applied with a constant-velocity kinematic feedforward controller which has the advantage of generating steady-state inputs despite dynamic oscillations during cable failures, as well as a Linear Quadratic Regulator (LQR) feedback controller to locally dampen these oscillations. 
    more » « less